Cadillac Aera Concept, 2010

Cadillac Aera Concept, 2010

The Cadillac Aera Concept won the 2010 Los Angeles Auto Show Design Challenge, tying with Smart and besting entries from seven other automakers including Mercedes-Benz, Honda, Nissan, Toyota and Maybach. GM Advanced Design has now won the honor more times than any other design team; this is its third victory since 2005.

This is the seventh year for the contest, and this year designers were asked to envision the "1,000 lb. car" and tasked to imagine an efficient four-passenger vehicle that maintained comfort, safety, driving performance and style while not exceeding the weight requirement.
 
The Cadillac Aera Concept is powered by compressed air via a highly efficient Pneumatic Drive System that has a 10,000-psi composite air storage tank with capacity for a 1,000-mile range. Flexible, pressurized air cells in the exterior skin, similar to material developed for the NASA Mars Rover airbags, enhance passive safety and interior comfort. The flexible polymer skin optimizes aerodynamics and functions as an ultra-lightweight alternative to conventional body panels and glass.

Cadillac Aera's body utilizes a 3D lattice, mono-formed frame that was designed to be similar to configurations found consistently in nature. The structure is formed from unique, alloy-utilizing, semi-solid freeform manufacturing, creating a naturally strong, extremely lightweight frame. All major body parts, including interior components, are essentially "grown" into a single part lattice structure.

The interior is crafted with an ultra-light recyclable polymer that allows for HVAC channels, fully adjustable seating, storage and comfort features all in one mono-form structure. Generous storage space accommodates luggage for two people.

Additional technologies include an all-in-one wheel system that combines rotary actuator propulsion, steering and suspension functions. A drive-by-wire system decreases the mass of electrical components, while vehicle-to-vehicle communication promotes active safety.